Lesson Plan for Course: B.Sc (Sem-I) (DSC) Code: MTMGCOR01T Credit: 6

- Course Name: Differential Calculus
- Course coordinator: Dr. Pintu Debnath
- Course Outcomes:
 - CO-1. Learn ε and δ definition of limit and continuity of a real-valued function.
 - CO-2. Apply Leibnitz's theorem to derive successive differentiation.
 - CO-3. Concept of Euler's theorem and its application on homogeneous function.
 - CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves.
 - CO-5. To understand Rolle's theorem and several mean value theorems and their applications including the problems related to maxima minima and indeterminate form.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Tangents and normals, Curvature.	BS	08	Theoretical – 08
				Tutorial - 00
	Rolle's theorem, Mean Value	SM	06	Theoretical – 04
	theorems, Taylor's theorem with			Tutorial - 02
	Lagrange's and Cauchy's forms of			
	remainder, Taylor's series,			
	Maclaurin's series of $\sin x$, $\cos x$,			
	e^x , $log(l+x)$, $(l+x)^n$.			
	Limit and Continuity (ϵ and δ	PD	10	Theoretical – 09
	definition), Types of			Tutorial - 01
	discontinuities, Differentiability of			
	functions, Successive			
	differentiation, Leibnitz's theorem.			
Oct	Curvature.	BS	01	Theoretical – 01
				Tutorial - 00
Nov		nal Assessm		
	Asymptotes, Singular points.	BS	10	Theoretical – 08
	126	C) I	0.6	Tutorial - 02
	Maxima and Minima.	SM	06	Theoretical – 04
	Partial differentiation.	PD	08	Tutorial - 02 Theoretical – 07
	Partial differentiation.	PD	08	Tutorial - 01
Dec	Tracing of curves. Parametric	BS	07	Theoretical – 06
200	representation of curves and	25	0,	Tutorial - 01
	tracing of parametric curves, Polar			
	coordinates and tracing of curves			
	in polar coordinates.			
	Indeterminate forms.	SM	05	Theoretical – 03
	material and remise	~		Tutorial - 02
	Euler's theorem on homogeneous	PD	09	Theoretical – 08
	functions.			Tutorial - 01
	2 nd Inter	nal Assessm	ent	
Jan	Revision	BS	02	Theoretical – 06
		SM	02	Tutorial - 00
		PD	02	
		ster Examin		
	Assessment: Internal Assessment &		Total: 76	Theoretical – 64
Rooks:	Assignment		Hrs	Tutorial - 12

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- > S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India, 2019.

▶ H. Anton, I. Birens and S. Davis, *Calculus*, John Wiley and Sons, Inc., 2002.

Lesson Plan for Course: B.Sc(Sem-I) (GE) Code: MTMHGEC01T Credit: 6

- Course Name: Differential CalculusCourse coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. Learn ε and δ definition of limit and continuity of a real-valued function.
 - CO-2. Apply Leibnitz's theorem to derive successive differentiation.
 - CO-3. Concept of Euler's theorem and its application on homogeneous function.
 - CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves.
 - CO-5. To understand Rolle's theorem and several mean value theorems and their applications including the problems related to maxima minima and indeterminate form.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*		
Sep	Tangents and normals, Curvature.	BS	08	Theoretical – 08		
				Tutorial - 00		
	Rolle's theorem, Mean Value	SM	06	Theoretical – 04		
	theorems, Taylor's theorem with			Tutorial - 02		
	Lagrange's and Cauchy's forms of					
	remainder, Taylor's series,					
	Maclaurin's series of $\sin x$, $\cos x$,					
	e^x , $log(l+x)$, $(l+x)^n$.					
	Limit and Continuity (ε and δ	PD	10	Theoretical – 09		
	definition), Types of			Tutorial - 01		
	discontinuities, Differentiability of					
	functions, Successive					
	differentiation, Leibnitz's theorem.					
Oct	Curvature.	BS	01	Theoretical – 01		
				Tutorial - 00		
Nov	1st Inter	nal Assessm	ent			
	Asymptotes, Singular points.	BS	10	Theoretical – 08		
				Tutorial - 02		
	Maxima and Minima.	SM	06	Theoretical – 04		
				Tutorial - 02		
	Partial differentiation.	PD	08	Theoretical – 07		
		DC	07	Tutorial - 01		
Dec	Tracing of curves. Parametric	BS	07	Theoretical – 06		
	representation of curves and			Tutorial - 01		
	tracing of parametric curves.					
	Indeterminate forms.	SM	05	Theoretical – 03		
			0.0	Tutorial - 02		
	Euler's theorem on homogeneous	PD	09	Theoretical – 08		
	functions.			Tutorial - 01		
		nal Assessm		TT1 1 0 -		
Jan	Revision	BS	02	Theoretical – 06		
		SM PD	02 02	Tutorial - 00		
	Find Come					
	End Semester Examination					
	Assessment: Internal Assessment & Assignment		Total: 76 Hrs	Theoretical – 64 Tutorial - 12		
Poolso.	Assignment		1118	1 uwi iai - 12		

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India. 2019.
- H. Anton, I. Birens and S. Davis, *Calculus*, John Wiley and Sons, Inc., 2002.
- ▶ G.B. Thomas and R.L. Finney, *Calculus*, Pearson Education, 2007.

Lesson Plan for Course: B.Sc (Sem-III) (DSC) Code: MTMGCOR03T Credit: 6

• Course Name: Real Analysis

• Course coordinator: Dr. Biswajit Sarkar

• Course Outcomes:

CO-1. Understand some properties of sets in \mathbb{R} .

CO-2. Able to solve problems related with real sequence.

CO-3. Learn about infinite series and their tests of convergence.

CO-4. To understand about Sequences and series of functions.

CO-5. Able to find radius of convergence of power series.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Finite and infinite sets, examples of countable	BS	03	Theoretical – 02
	and uncountable sets, Real line, bounded			Tutorial - 01
	sets, suprema and infima.			
	Real Sequence, Bounded sequence. Cauchy	SM	07	Theoretical – 06
	convergence criterion for sequences. Cauchy's			Tutorial - 01
	theorem on limits, order preservation and			
	squeeze theorem.	DD.	0.5	TT1 1 0.4
	Infinite series. Cauchy convergence criterion	PD	06	Theoretical – 04
Com	for series. Positive term series, geometric series.	BS	06	Tutorial - 02 Theoretical – 04
Sep	Completeness property of R, Archimedean property of R, intervals, Concept of cluster	ВЗ	06	Tutorial - 02
	points and statement of Bolzano-Weierstrass			1 utorrar - 02
	theorem.			
	Monotone sequences and their convergence	SM	08	Theoretical – 06
	(monotone convergence theorem without			Tutorial - 02
	proof).			
	Comparison test, convergence of p-series,	PD	05	Theoretical – 04
	Root test, Ratio test.			Tutorial - 01
Oct			00	Theoretical – 00
				Tutorial - 00
Nov	1 st Internal A			
	Power series.	BS	04	Theoretical – 04
		CM	0.6	Tutorial - 00
	Sequences and series of functions,	SM	06	Theoretical – 05 Tutorial - 01
	Pointwise and uniform convergence. M_n -			Tutoriai - 01
	test, M-test.	DD	0.5	TD1 4: 1 0.4
	Infinite series: Alternating series, Leibnitz's	PD	05	Theoretical – 04 Tutorial - 01
D	test (Tests of Convergence without proof).	DC	0.5	
Dec	Radius of convergence Power series.	BS	05	Theoretical – 04
	Statements of the results about uniform	SM	06	Tutorial - 01 Theoretical – 04
		SIVI	00	Tutorial - 02
	convergence and integrability and differentiability of functions.			1 utorrar - 02
	Infinite series: Definition and examples of	PD	04	Theoretical – 03
	absolute and conditional convergence.	12		Tutorial - 01
	2 nd Internal A	ssessment		
Jan	Revision	BS	02	Theoretical -06
		SM	02	Tutorial - 00
		PD	02	
	End Semester	Examinatio	n	
	Assessment: Internal Assessment &		Total: 71	Theoretical – 56
	Assignment		Hrs	Tutorial - 15

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India, 2019.
- ➤ K.A. Ross, *Elementary Analysis- The Theory of Calculus Series-* Undergraduate Texts in Mathematics, Springer Verlag, 2003.
- E. Fischer, *Intermediate Real Analysis*, Springer Verlag, 1983.
- T.M. Apostol, *Calculus* (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002.

Lesson Plan for Course: B.Sc (Sem-III) (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Unit-1: Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart.	SM	04	Theoretical-03 Tutorial-01
Sep	Unit-2: Fundamentals of Programming: Built in Data Types: int, float, double, char; Constants and Variables; first program: printf(), scanf(), compilation etc., keywords, Arithmetic operators: precedence and associativity, Assignment Statements: post & pre increment/decrement, logical operators: and, or, not.	SM	08	Theoretical-07 Tutorial-01
Oct			00	Theoretical-00 Tutorial-00
Nov	Unit-3: Statements: Relational operators, if-else statement.	SM	07	Theoretical-06 Tutorial-01
Dec	Unit-3: Statements: Iterative Statements: for loop, while loop and do-while loop; controlling loop execution: break and continue, nested loop. End Semester Examin	SM	07 Department)	Theoretical-06 Tutorial-01
	Assessment: Assignment	ниноп (Бу Г	Total: 26 Hrs	Theoretical-22 Tutorial-04

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.

Lesson Plan for Course: B.Sc(Sem-III) (GE) Code: MTMHGEC03T Credit: 6

- Course Name: Real Analysis
- Course coordinator: Dr. Pintu Debnath
- Course Outcomes:
 - CO-6. Understand some properties of sets in \mathbb{R} .
 - CO-7. Able to solve problems related with real sequence.
 - CO-8. Learn about infinite series and their tests of convergence.
 - CO-9. To understand about Sequences and series of functions.
 - CO-10. Able to find radius of convergence of power series.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Finite and infinite sets, examples of countable	BS	03	Theoretical – 02
-	and uncountable sets, Real line, bounded			Tutorial - 01
	sets, suprema and infima.			
	Real Sequence, Bounded sequence. Cauchy	SM	07	Theoretical – 06
	convergence criterion for sequences. Cauchy's			Tutorial - 01
	theorem on limits, order preservation and			
	squeeze theorem.			
	Infinite series. Cauchy convergence criterion for	PD	06	Theoretical – 04
	series. Positive term series, geometric series.			Tutorial - 02
Sep	Completeness property of R, Archimedean	BS	06	Theoretical – 04
•	property of R, intervals, Concept of cluster			Tutorial - 02
	points and statement of Bolzano-Weierstrass			
	theorem.			
	Monotone sequences and their convergence	SM	08	Theoretical – 06
	(monotone convergence theorem without proof).			Tutorial - 02
	Comparison test, convergence of p-series,	PD	05	Theoretical – 04
	Root test, Ratio test.			Tutorial - 01
Oct			00	Theoretical – 00
				Tutorial - 00
Nov	1 st Internal As	ssessment		
	Power series.	BS	04	Theoretical – 04
				Tutorial - 00
	Sequences and series of functions,	SM	06	Theoretical – 05
	Pointwise and uniform convergence. M_n -			Tutorial - 01
	test, M-test.			
	Infinite series: Alternating series, Leibnitz's	PD	05	Theoretical – 04
	test (Tests of Convergence without proof).			Tutorial - 01
Dec	Radius of convergence Power series.	BS	05	Theoretical – 04
200	reading of convergence 1 ower series.	22		Tutorial - 01
	Statements of the results about uniform	SM	06	Theoretical – 04
	convergence and integrability and			Tutorial - 02
	differentiability of functions.			
	Infinite series: Definition and examples of	PD	04	Theoretical – 03
	absolute and conditional convergence.			Tutorial - 01
	2 nd Internal A	ssessment		
Jan	Revision	BS	02	Theoretical – 06
		SM	02	Tutorial - 00
		PD	02	
	End Semester F			
	Assessment: Internal Assessment &		Total: 71	Theoretical – 56
	Assignment		Hrs	Tutorial - 15

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India. 2019.
- ➤ K.A. Ross, *Elementary Analysis- The Theory of Calculus Series-* Undergraduate Texts in Mathematics, Springer Verlag, 2003.
- E. Fischer, *Intermediate Real Analysis*, Springer Verlag, 1983.
- T.M. Apostol, *Calculus* (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002.

Lesson Plan for Course: B.Sc (Sem-III) (GE) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Unit-1: Basics of Computer	SM	04	Theoretical-03
	Programming:			Tutorial-01
	Definition, Requirement of programming language, Machine language, high-level			
	programming languages, machine code of			
	a program: compilation process, Problem			
	solving approaches: algorithm and			
	flowchart.			
Sep	Unit-2: Fundamentals of Programming:	SM	08	Theoretical-07
_	Built in Data Types: int, float, double,			Tutorial-01
	char; Constants and Variables; first			
	<pre>program: printf(), scanf(), compilation etc.,</pre>			
	keywords, Arithmetic operators:			
	precedence and associativity, Assignment			
	Statements: post & pre			
	increment/decrement, logical operators: and, or, not.			
Oct	and, or, not.		00	Theoretical-00
			00	Tutorial-00
Nov	Unit-3: Statements:	SM	07	Theoretical-06
	Relational operators, if-else statement.			Tutorial-01
Dec	Unit-3: Statements: Iterative Statements:	SM	07	Theoretical-06
	for loop, while loop and do-while loop;			Tutorial-01
	controlling loop execution: break and			
	continue, nested loop.			
	End Semester Examir	nation (By I	*	
	Assessment: Assignment		Total: 26	Theoretical-22
			Hrs	Tutorial-04

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.

Lesson Plan for Course: B.Sc (Sem-V) (DSC) Code: MTMGDSE01T Credit: 6

- Course Name: Matrices
- Course coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. To form vector space and subspace over \mathbb{R} and to find their standard basis.
 - CO-2. To conceptualize translation, dilation, rotation, reflection in a point, line and plane (in matrix form) and able to interpret eigen values and eigen vectors of these transformations including eigen spaces.
 - CO-3. Able to calculate rank of matrices, to reduce in normal form and to solve linear homogeneous and non-homogeneous equations.
 - CO-4. Able to reduce matrices to diagonal form through eigen values and eigen vectors.
 - CO-5. Capable to applying elementary row operations to compute matrix rank and inverses, and to solve system of linear equations.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Unit-1: R, R2, R3 as vector spaces over	PD	04	Theoretical – 03
Aug	R. Standard basis for R.	ID	04	Tutorial - 01
	Unit-2: Translation, Dilation.	BS	03	Theoretical – 03
		22		Tutorial - 01
	Unit-3: Types of matrices. Rank of a	SM	08	Theoretical – 06
	matrix. Invariance of rank under			Tutorial - 02
	elementary transformations.			
Sep	Unit-1: Standard basis for each of vector	PD	07	Theoretical – 05
	spaces R2, R3. Concept of Linear			Tutorial - 02
	Independence and examples of different			
	bases. Subspaces of R2, R3.			
	Unit-2: Rotation, Reflection in a point.	BS	04	Theoretical – 03
				Tutorial - 01
	Unit-3: Reduction to normal form.	SM	09	Theoretical – 08
	Solutions of linear homogeneous and non-			Tutorial - 01
	homogeneous equations with number of			
	equations and unknowns up to four.			
Oct	Unit-2: Reflection in a line and plane.	BS	01	Theoretical – 01
	st			Tutorial - 00
Nov		l Assessmen		FF1 1 00
	Unit-2: Interpretation of eigen values and	PD	04	Theoretical – 03
	eigen vectors for such transformations.	DC	0.5	Tutorial - 01
	Unit-2: Matrix form of basic geometric	BS	05	Theoretical – 04
	transformations. Unit-4: Matrices in diagonal form. Reduction	CM	00	Tutorial - 01
	to diagonal form upto matrices of order 3.	SM	09	Theoretical – 08
	Computation of matrix inverses using			Tutorial - 01
	elementary row operations. Rank of matrix.			
Dec	Unit-2: Eigen spaces as invariant	PD	05	Theoretical – 04
	subspaces.			Tutorial - 01
	Unit-2: Matrix form of basic geometric	BS	04	Theoretical – 03
	transformations.			Tutorial - 01
	Unit-4: Solutions of a system of linear	SM	09	Theoretical – 07
	equations using matrices. Illustrative			Tutorial - 02
	examples of above concepts from			
	Geometry, Physics, Chemistry,			
	Combinatorics and Statistics.			
		al Assessmer		
Jan	Revision	PD	02	Theoretical – 06
		BS	02	Tutorial - 00
		SM	02	
	End Semest	er Examina	tion	

Assessment: Internal Assessment &	Total: 79	Theoretical -64
Assignment	Hrs	Tutorial - 15

- A.I. Kostrikin, *Introduction to Algebra*, Springer Verlag, 1984.
- S. H. Friedberg, A. L. Insel and L. E. Spence, *Linear Algebra*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- ➤ Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989
- S. K. MAPA, Higher Algebra, Sarat Book Distributor, India. 2019.

Lesson Plan for Course: B.Sc (Sem-V) (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. To understand arrays and multi-dimensional arrays.
 - CO-2. Able to use arrays and multi-dimensional arrays in C-programming.
 - CO-3. To understand about functions.
 - CO-4. Capable to write programming by using functions.
 - CO-5. Able to write programming C languages like n!, nCr, etc.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Unit-4: Arrays:	BS	04	Theoretical-03
	Definition & requirement, declaration &			Tutorial-01
	initialization, indexing.			
Sep	Unit-4: Arrays:	BS	06	Theoretical-04
	One dimensional array: finding maximum,			Tutorial-02
	minimum, Simple sorting and searching.			
	Unit-5: Multi-dimensional arrays:			
	Matrix Manipulations (Addition)		0.0	
Oct			00	Theoretical-00
		D.C.	0.5	Tutorial-00
Nov	Unit-5: Multi-dimensional arrays:	BS	06	Theoretical-04
	Matrix Manipulations (Multiplication,			Tutorial-02
	Transpose), Arrays and Pointers, Memory			
	allocation and deallocation: <i>malloc()</i> and <i>free()</i> functions.			
Dec	Unit-6: Functions:	BS	06	Theoretical-04
Dec	Why?, How to declare, define and invoke a	DS	00	Tutorial-02
	function, Variables' scope, local& global			Tutoriar-02
	variables and function parameters,			
	Pointers, arrays as function parameters,			
	return statement, Header files and their			
	role. Illustrate different examples like			
	swapping values, compute n!, nCr, find			
	max/min from a list of elements, sort a set			
	of numbers, matrix addition/ multiplication			
	etc.			
	End Semester Examir	nation (By I	Department)	
	Assessment: Assignment		Total: 22	Theoretical-15
			Hrs	Tutorial-07

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.